学 术 报 告

报告题目:Nonstandard Calderon-Zygmund type estimates for elliptic and parabolic equations

报告学者:Hongjie Dong教授



报告时间2019年1月10日(周四下午) 16:00--17:30


报告摘要:  The $L_p$-theory of elliptic and parabolic equations with discontinuous coefficients has been studied extensively in the last fifty years. On one hand, in view of the well-known counterexamples there does not exist a solvability theory for uniformly elliptic operators with bounded and measurable coefficients. On the other hand, by a result of Jerison and Kenig, even the Poisson equation on a Lipschitz domain may not be solvable in $W^1_p$ for large $p$ unless the boundary is sufficiently flat. Therefore, many efforts have been made to treat particular types of discontinuous coefficients and nonsmooth domains. In this talk, I will review some recent work in this direction.

报告者简介:Hongjie Dong,布朗大学教授. 研究方向:非线性椭圆和抛物方程、Navier-Stokes方程、随机过程及有限元方法。在国际著名刊物CPAM、ARMA、CMP、TAMS等发表SCI论文80余篇,主持美国国家自然科学基金3项;为国际著名SCI期刊Communications on Pure and Applied Analysis和Electronic Journal of Differential Equations编委。 2001.7本科毕业于复旦大学, 2005.8 Minnesota获博士学位,是从国际著名数学家Nicolai V. Krylov。2005.9–2006.8芝加哥大学博士后,2006.9–2007.6, 2008.9–2008.12两度加盟普林斯顿大学高等研究院访问学者;自2007.7起在Brown大学工作至今。