学术讲座

首页 >> 学术讲座

理学院2017-2018学年夏季第一周学术报告(四)

发布时间:2018-07-09

学 术 报 告

 

报告题目:Some construction schemes for cubic fault tolerant Hamiltonian graphs

 

报告学者:徐力行教授

 

报告者单位台湾靜宜大學

 

报告时间7月12日下午4:00-5:00

 

报告地点学活1005

 

摘要:A graph G = (V,E) is Hamiltonian if there exists a spanning cycle in G. A Hamiltonian graph G =(V,E) is 1-vertex fault tolerant Hamiltonian if G-F remains Hamiltonian for any fault F that is a vertex in V. A Hamiltonian graph G = (V,E) is 1-edge fault tolerant Hamiltonian if G-F remains Hamiltonian for any fault F that is an edge in E. A graph is 1-fault tolerant Hamiltonian if it is 1-vertex fault tolerant Hamiltonian and 1-edge fault tolerant Hamiltonian. A graph is Hamiltonian connected if there exists a Hamiltonian path between any two different vertices in G. A bipartite Hamiltonian graph G = ( B∪W , E) is 1p-fault tolerant Hamiltonian if G-F remains Hamiltonian for any fault F that is consisted of a vertex in B

and a vertex in W. A bipartite graph G = ( B∪W , E) is Hamiltonian laceable if there exists a Hamiltonian path between any vertex in B and any vertex in W.   In this paper, we introduce some construction schemes for cubic bipartite graphs that are 1p-fault tolerant Hamiltonian and for 1-fault tolerant Hamiltonian graphs.

 

主办教师:郝荣霞

 

欢迎广大同学老师积极踊跃参加!