学术讲座

首页 >> 学术讲座

理学院秋季第八周学术报告(一)

发布时间:2016-11-12

  报告题目:Genus polynomials of ring-like and spider-like families of graphs

  报告学者:陈仪朝

  报告者单位:湖南大学

  报告时间:10月24号下午4:30-5:30

  报告地点:学活10层活动中心

  摘要:  

  Abstract: In a recent previous paper, we have used the Cayley-Hamilton theorem to derive a $k/uth$-order homogeneous recursion linear for the genus polynomials of any $H$-linear family of graphs.  In this sequel, our main theorem, which again uses the Cayley-Hamilton theorem,  provides a recursion for the genus polynomials of what we call /textit{$H$-spider-like} families.  As a corollary, we obtain a recursion for the genus polynomials of graph in ring-like families.  We apply this recursion to calculating the genus distributions of some familiar ladder-like families. We also prove that the modes of the genus distribution sequences of some ladder-like graphs are either the upper-rounding or the lower-rounding of their average genera.  This is joint with J.L. Gross.

 

  学者简介: 

  陈仪朝,湖南大学教授,2013年入选教育部新世纪优秀人才。2012, 2014等在美国数学年会做邀请报告。在组合图论高水平期刊Canad. J. Math.、Canad. Math. Bull.、J. Graph Theory、Discrete Math.、European J. Combin. Electron. J. Combin. 等上发表多篇论文。

 

欢迎广大同学老师积极踊跃参加!